Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001 ## Low Energy Optical Conductivity of $Yb_4(As_{1-x}Xp_x)_3$ (Xp = P, Sb) Shin-ichi Kimura¹, Mitsuru Okuno², Hideki Iwata², Tatsuhiko Nishi², Hidekazu Aoki³, Akira Ochiai⁴ - ¹ Grad. Sch. Sci. & Tech., Kobe University, Kobe 657-8501, Japan & PRESTO, JST, Japan - ² Grad. Sch. Sci. & Tech., Kobe University, Kobe 657-8501, Japan - ³ Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden 01187, Germany - ⁴ Center for Low Temp. Sci., Tohoku Univeristy, Sendai 980-8578, Japan To investigate the anomalous transport property and the electronic structure near the Fermi level of Yb₄As₃, we have measured temperature dependence of reflectivity spectra of Yb₄(As_{1-x}Xp_x)₃ (Xp = P, Sb, x = 0 - 0.24) in the photon energy range from the farinfrared to the vacuum-ultraviolet. The optical conductivity spectrum due to carriers absorption (Drude-curve) strongly changes with changing temperature. Above 200 K, the Drude-curve with large effective carrier density (N_{eff}) and short relaxation time (τ) is commonly observed in all Yb₄(As_{1-x}Xp_x)₃. On the other hand, below 60 K in Yb₄As₃, the Drude-curve changes to that with small N_{eff} and long τ . Simultaneously, a peak with an energy gap (charge gap) at 0 eV appears at 15 meV. The charge gap appears coincident with the growth of the spin-correlation on the Yb³⁺ one-dimentional antiferromagnetic chain along one of four equivalent <111> chains. Then the additional peak is considered to refer to the electronic structure on the Yb³⁺ chain, i.e., the charge gap appears at low temperature on the Yb³⁺ chain.